# Niedersachsen



WILHELMSHAVEN

#### APPLICATIONS OF HYDROGEN & FUEL CELLS IN SHIPPING

**RESEARCH FINDING** 

# CONTENTS

Shipping Emissions Inventory
 Advantages of using Hydrogen
 Applications of Hydrogen in Ports
 Applications of Hydrogen onboard
 Required development in Fuel Cells





## SHIPPING EMISSIONS INVENTORY

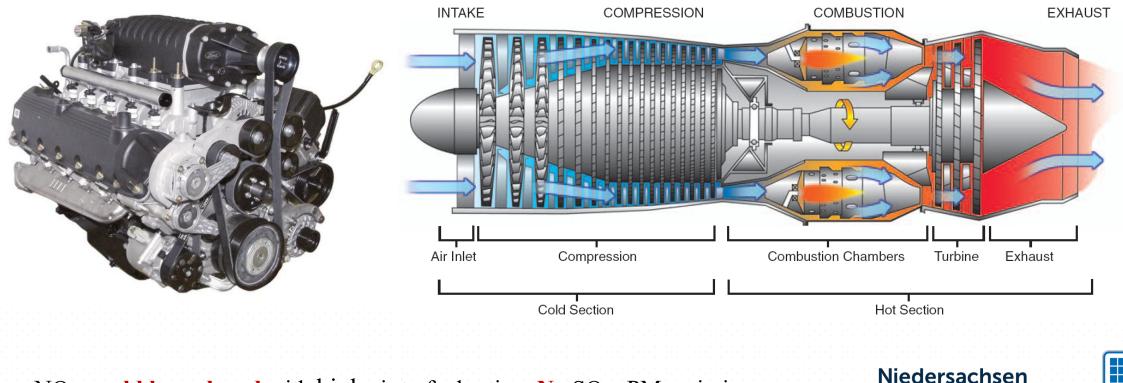
|                           | ICCT (million tons) |        |        |
|---------------------------|---------------------|--------|--------|
|                           | 2013                | 2014   | 2015   |
| CO <sub>2</sub> Emissions | 910                 | 930    | 932    |
| SO <sub>x</sub> Emissions | 10.355              | 10.361 | 10.457 |
| NO <sub>x</sub> Emissions | 18.426              | 18.398 | 19.062 |
| <b>PM Emissions</b>       | 1.475               | 1.504  | 1.492  |



MARPOL Annex VI is strictly followed to have the air pollution under control limits.






1. Hydrogen is a great storage medium, that could help RE systems to become self-contained solutions.

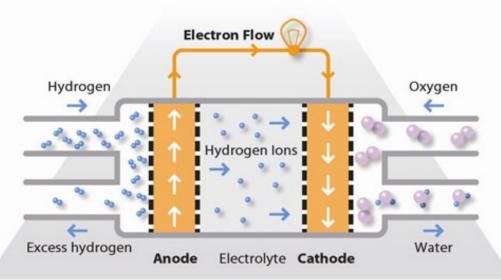


3743.2 GWh of electricity was curtailed pursuant to Section 14 of Renewable Energy Act (EEG) in 2016



#### 2. Produces less emissions when burned in Hydrogen ICEs or Gas turbines

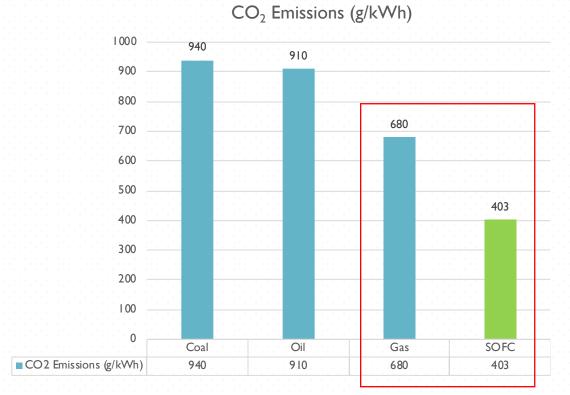



NOx could be reduced with high air to fuel ratio – No SOx, PM emissions





#### 3. Produces zero- to low- carbon emissions in Fuel cells


#### Pure H<sub>2</sub> in PEM FC (LT-FC)



Anode Reaction: 2  $H_2 \rightarrow 4 H^+ + 4 e^-$ 

Cathode Reaction:  $O_2 + 4 e^- + 4 H^+ \rightarrow 2 H_2O$ Overall Reaction:  $2 H_2 + O_2 \rightarrow 2 H_2O$ 

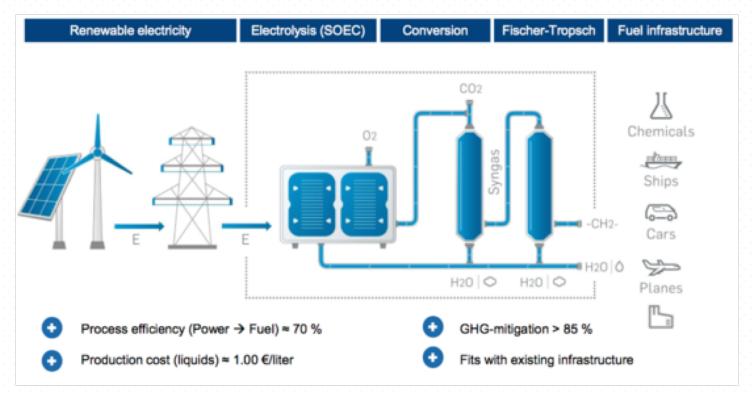
#### H<sub>2</sub> from Internally reformed Natural gas in a SOFC

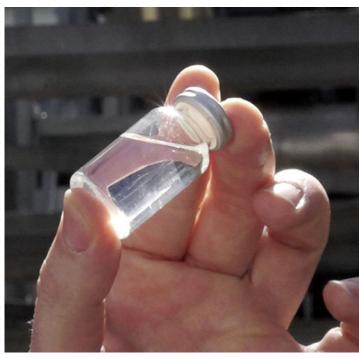


#### **No** NOx or PM – **Insignificant Amount** SOx emissions

4. Hydrogen could be blended with natural gas to reduce emissions, without the need to modify the domestic burners.







**Blending ratio: 20–30%**  $H_2$  to **70–80%** Natural gas





5. Wide range of e-fuels could be derived from Hydrogen (Power to Gas, Power to Liquid)









#### 1. Transportation of Goods (Road Freight)



| Comparison Point                 | Diesel                    | Electric                   |
|----------------------------------|---------------------------|----------------------------|
| Horse Power                      | 500 HP                    | Up to 1,000 HP             |
| Torque                           | I,650 ft-Ibs              | Up to 2,000 ft-lbs         |
| Range                            | 500-700 miles             | Up to 500-1,000 miles      |
| Top Speed Up Hills (6%)          | 20-40 MPH                 | 65 MPH                     |
| On Descent                       | Exhaust & Friction Brakes | Recharging & Saving Brakes |
| Acceleration 0-60 MPH Under Load | 60 seconds                | 30 seconds                 |
| Fuel Efficiency (MPG)            | 7.5 MPG                   | 13 – 15 MPG                |
| Weight                           | 19,000 - 23,000 lbs       | 18,000 - 21,000 lbs        |

**Freight Efficiency (Ton-Miles per Galon):** Nikola One Class 8 Truck is 75% more efficient than a Class 8 Diesel truck Niedersachsen



1. Transportation of Goods (Rail)





2. Cargo Handling

250kW for traction or Power-to-grid 150 kW power for traction

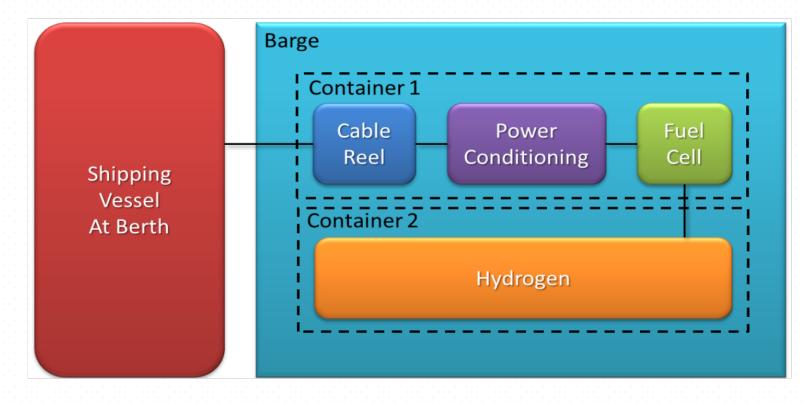




#### 3. Cold ironing (Shore-to-ship power supply)

The Surf 'n' Turf project, utilizes the green hydrogen produced by wind power on Eday Island in a fuel cell that would act "as an auxiliary power source for the inter-island ferries when they are docked in the harbor overnight."






Niedersachsen  $\wedge$  Ports



#### 3. Seaside Cold ironing

The main advantage; it can be moved from one berth to another, and it can also be used to power the ships in Anchorage area







### APPLICATIONS OF H<sub>2</sub> ONBOARD

#### The Application of FC depend on: The Power Requirement of the Vessel

| Power Demand                      | Fuel Cell Application                                                                                                                                |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Low (up to 500 kW)                | • Total power demand (Propulsion + Auxiliary Power Supply) could be                                                                                  |  |
|                                   | covered by 1 FC module (Example: FCS Alsterwasser)                                                                                                   |  |
| Medium (1-5 MW)                   | • The total power demand could be covered by several FC modules                                                                                      |  |
|                                   | • 1 FC module supply the bigger part of the auxiliary power.                                                                                         |  |
| High (5-100 MW, 1-15MW Auxiliary) | • Several FC modules supply the bigger part of the auxiliary power.                                                                                  |  |
|                                   | <ul> <li>One or more fuel cell module(s) supply power to single ship sectors.</li> <li>(Suitable for Large passenger ships) Niedersachsen</li> </ul> |  |
|                                   | Niedersachsen                                                                                                                                        |  |



### APPLICATIONS OF H<sub>2</sub> ONBOARD

#### Type of Fuel Cell also depends: The Power Requirement of the Vessel

Merchant ships has a high energy demand requires more fuel storage capacity, since the alternative fuels have a lower energy content than that of Heavy Fuel Oil (HFO).

| Fuel          | Volume factor* |
|---------------|----------------|
| HFO           | 1.0            |
| LNG           | 1.8            |
| LPG           | 1.7            |
| LH2           | 4.7            |
| CH2 (700 bar) | 8.6            |
|               |                |

\* without considering the volume of the different storage technologies.





#### **REQUIRED DEVELOPMENT**

- 1. Increasing Power output of HT-FC.
- 2. Increasing the specific power (kW/kg) and power density (kW/m3) of HT-fuel cell systems

The weight of HT-FC is 7-19 times higher than that of diesel generator The volume of HT-FC is 10-15 times higher than that of diesel generator

- 3. The lifetime of FC be should be increased to 40,000 80,000 h to have a competitive advantage over a conventional diesel generator, that has usually service interval of about 25,000-30,000 h
- 4. The **prices** of the technology should drop
- 5. More hydrogen infrastructure is needed

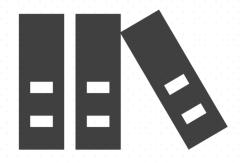






JADEWESERPORT WILHELMSHAVEN

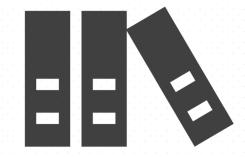
#### NO TIDE. NO LIMITS.


# Niedersachsen

# FORVOUR

M.ABDELRAZEK@JADEWESERPORT.DE

### REFERENCES


- "Study: Global shipping emissions rise as IMO meets to discuss climate action | International Council on Clean Transportation." [Online]. Available: https://www.theicct.org/news/study-global-shipping-emissions-rise. [Accessed: 03-Dec-2018].
- Bundesnetzagentur, "EEG in Zahlen 2016."
- IEA-ETSAP, "A Spatio-temporal Optimization Model for the Analysis of Future Energ...," 10:26:17 UTC.
- L. Bird, J. Cochran, and X. Wang, "Wind and Solar Energy Curtailment: Experience and Practices in the United States," NREL/TP--6A20-60983, 1126842, Mar. 2014.
- "Hydrogen Production: Electrolysis | Department of Energy." [Online]. Available: https://www.energy.gov/eere/fuelcells/hydrogen-production-electrolysis. [Accessed: 12-Sep-2018].
- S. J. McPhail, J. Kiviaho, and B. Conti, The yellow pages of SOFC technology. International Status of SOFC deployment 2017. VTT Technical Research Centre of Finland Ltd, 2017.
- E. Wiberg, N. Wiberg, and A. F. Holleman, Inorganic chemistry, 1st English ed. San Diego : Berlin ; New York: Academic Press ; De Gruyter, 2001.
- O. Strohbach, "Fuel of the future: Research facility in Dresden produces first batch of Audi e-diesel," p. 3.
- "Nikola One," Nikola Motor Company. [Online]. Available: https://nikolamotor.com/one. [Accessed: 11-Oct-2018].
- Jonathan Spira, "Nicola Motor Company Transforming Transportation," 10-Mar-2017.
- Z. Pumphery, BNSF 1205 BNSF HH20B at Kansas City, MO. 2014.
- A. R. Miller, K. S. Hess, D. L. Barnes, and T. L. Erickson, "Zero-Emission, Hydrogen-Fuelcell Locomotive for Urban Rail." Vehicle Projects LLC, Denver, USA.





### REFERENCES

- F. Peng, W. Chen, Z. Liu, Q. Li, and C. Dai, "System integration of China's first proton exchange membrane fuel cell locomotive," International Journal of Hydrogen Energy, vol. 39, no. 25, pp. 13886–13893, Aug. 2014.
- Fuel Cell and Hydrogen 2 Joint Undertaking (FCH 2 JU), "ANNUAL WORK PLAN and BUDGET." 2018.
- "València será el primer puerto de Europa en usar la energía del hidrógeno," www.efe.com. [Online]. Available: https://www.efe.com/efe/comunitat-valenciana/economia/valencia-sera-el-primer-puerto-de-europa-en-usar-la-energia-delhidrogeno/50000882-3855580. [Accessed: 23-Jan-2019].
- "Orkney tidal energy produces hydrogen, fuel cell is installed," Fuel Cells Bulletin, vol. 2017, no. 10, pp. 14–15, Oct. 2017.
- J. W. Pratt and A. P. Harris, "Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility.," SAND2013--0501, 1117104, Jan. 2013.
- F. Vogler and G. Sattler, "3 Hydrogen-fueled marine transportation," in Compendium of Hydrogen Energy, M. Ball, A. Basile, and T. N. Veziroğlu, Eds. Oxford: Woodhead Publishing, 2016, pp. 35–65.



