Building with Nature in Wadden Sea Ports

Sediment Management in Ports, Eemshaven, October 29th 2019

Martin J. Baptist

Wageningen Marine Research, Den Helder, The Netherlands & EcoShape, Dordrecht, The Netherlands; <u>martin.baptist@wur.nl</u>

EcoShape Building with Nature Programme

- EcoShape is a Dutch consortium of private parties, government organisations, research institutes, universities and NGOs founded in 2008.
- They carry out the Building with Nature (BwN) innovation programme to test and develop a new design philosophy in hydraulic engineering that utilizes the forces of nature, thereby strengthening nature, economy and society.
- One of the cases within the BwN Programme concerns the Wadden Sea
 Ports and is carried out in co-operation with the Programme Towards a Rich Wadden Sea and the Dutch Programme Wadden Sea Ports since 2012.
- Visit <u>https://www.ecoshape.org/en/</u>

Dutch Wadden Sea Ports

How did the Harlingen project start?

- 1. Large maintenance dredging volumes in the Port of Harlingen $(\sim 1, 2 \text{ million } m^3/y)$.
- 2. Close-by dredge disposal locations, possibly leading to high return flow of sediment into port.
- **3.** Local nature organisation desired expansion of salt marshes.

1+2+3 gave the idea to bring dredged sediment to salt marshes.

Case study Port of Harlingen

A 'mud motor' was tested to promote the growth of salt marshes acting as sediment sink.

The Mud motor

Outline

Highlights

Abstract

Graphical abstract

Keywords

1. Introduction

2. Materials and methods

3. Results

4. Discussion

Acknowledgements

References

Show full outline 🗸

Figures (7)

Show all figures 🗸

Tables (3

Beneficial use of dredged sediment to enhance salt marsh development by applying a 'Mud Motor'

Martin J. Baptist ^a Ջ , T. Gerkema ^b, B.C. van Prooijen ^c, D.S. van Maren ^{c, d}, M. van Regteren ^a, K. Schulz ^b, I. Colosimo ^c, J. Vroom ^d, T. van Kessel ^d, B. Grasmeijer ^d, P. Willemsen ^{b, d, h}, K. Elschot ^a, A.V. de Groot ^a, J. Cleveringa ^e, E.M.M. van Eekelen ^f, F. Schuurman ^g, H.J. de Lange ^a, M.E.B. van Puijenbroek ^a

https://doi.org/10.1016/j.ecoleng.2018.11.019 Under a Creative Commons license Get rights and content open access

Highlights

- Salt marsh sediment dynamics increases with a well-designed Mud Motor.
- Small salinity gradients can significantly affect mud transport fluxes.
- The success of a Mud Motor is highly dependent on wind and wave forcing.

Reports

https://www.ecoshape.org/en/themes/sustainable-

harbour-development/#/en/projects/mud-motor/

Beneficial use of dredged sediment to enhance salt marsh development by applying a 'Mud Motor': evaluation based on monitoring

M. Baptist et al./2019

Transport of Mud Motor sediment - Modelling hydrodynamics and sediment transport

B. van Maren et al./2019

Title: Mud Motor Port of Harlingen, (Koehoal) Location: Port of Harlingen, Wadden Sea (NL) Date: 2016-2018 Involved parties: Van Oord, Royal Haskoning DHV, Arcadis, It Fryske Gea, Wageningen University, Deltares Technology Readiness Level:7 (system prototype demonstration in operational environment) Environments: Estuaries, Ports & Cities Keywords: salt mash, dredge, flow chart, mud, intertidal areas, port

Building With Nature Design

Traditional Design

EcoShape pilot project

5 Basic steps towards Building with Nature

Lessons learned from the Mud Motor

- Environmental regulations prescribe particular seasons and time slots for the disposal of dredged sediment that is affecting the strategy for mud disposal.
- Longer dredge cycle times and a loss of flexibility in temporal windows for the disposal are putting the contractor under higher strain and this leads to considerable extra costs.
- The feasibility of a Mud Motor depends on an assessment of additional cycle time for the dredger (extra costs), the valuation of salt marsh growth (nature profits), reduced dredging volumes in a port (reduced costs), and many practical issues (depth at the disposal location, time slots, natural dynamics).

Suitable Mud Motor locations

- Target at salt marshes that are end-stations of sediment transport, for instance at the landside of a bay;
- Particularly bays that have a riverine freshwater outflow, which enhances sediment transport towards the marsh.

Delfzijl Marconi case study

Testing conditions for salt marsh construction

 Salt marsh development is tested in field-scale plots with various clay percentages, and with / without seeding of pioneer plants.

building with nature

Height measurements

Ongoing work: monitoring

- LiDAR drone (cover), RTK-DGPS measurements (channels).
- Sedimentation-Erosion Bars (27 stations), Acoustic Surface Elevation Dynamics sensors (6 stations).
- Vegetation cover, composition and biomass (147 plots).
- Sediment grainsize composition (27 depth profiles).
- Microphytobenthos cover (27 stations).
- Seed bank in the added clay.

