

Ask E. Løvschall-Jensen, COO aej@seaborg.co

The world is facing aggravating issues

Satellite image of poverty. 7 billion people today - 9 billion in 2050. Despite serious efforts, global CO₂ emissions continue to rise.

Our mission

We will:

Enable the free market to fight the runaway greenhouse gas emissions and eliminate energy poverty.

By:

Commercializing a scalable, cheaperthan-coal, dispatchable energy source (by the mid-2020s).

Setting the scene Conventional nuclear = Safety by engineering

Severity of accidents and inherent system instability \rightarrow Safety by engineering.

> Mainly innovation in safety \rightarrow Complexity \rightarrow Costs, risk and delays.

> > Size becomes the economy of scale

 \rightarrow Poor market fit and massive upfront investments.

Larger reactors means increased severity \rightarrow Even more focus on safety.

The Compact Molten Salt Reactor (CMSR)

Our design:

- 1. Cannot be used for nuclear weapons
- 2. Burns waste from conventional reactors
- 3. Cannot melt down or explode

Molten salt reactor:

A fundamentally different class of nuclear reactor which has been built and operated 3+ times.

A tectonic shift in risk profile

If released, the fuel behaves like rock in nature.
Therefore, MSRs are not a risk to public health.
→ This shifts the risk from government to the industry, fundamentally changing the business model of the nuclear industry.

This is a game changer and it **simplifies everything**. MSRs will be **economically superior** to any other energy source.

Proprietary ultra compact design

Most importantly our proprietary **moderator** avoids the use of graphite. Additionally it gives us three unique advantages:

- 1. Unprecedented compactness (container-sized reactor module).
- 2. Economical at low power (100MW).
- 3. 12 years of operation without refueling.

Seaborg CMSR 250/100 MW

NuScale LWR 160/70 MW Small IMSR 300/125 MW Westinghouse LWR SMR 600/225 MW

Manufacturing

Small and modular means factory production.

Nuclear modules are assembled in a factory, like wind turbines or planes are, and shipped to the site of the power plant – anywhere.

Applications

6000

- The Seaborg CMSR power plant can produce 250MWt/100MWe (**power for 200,000 homes**).

- As stand alone: 100MWe **can be deployed** in remote communities, mining operations, or where the grid is weak (most low-income countries).
- Several power units can be linked in a chain, e.g. six units can replace a coal plant.

Excellent for high-temperature applications, e.g. production of **synthetic fuel**, hydrogen, ammonia, **fertilizer**, medical, etc.

Floating Nuclear Power Plants

- Utilize the ship yards effectiveness of manufacturing
- Pre-commission in port
- Turn key delivery
- Moveable asset
- Russia has build one 70 MWe (and have gotten 70 orders within 3 months)
- China plans 20 FNPPs
- For remote communities and mining operations in the beginning

Long-term plan: Make all fossil fuels obsolete

We can **replace all fossil fuels**, while delivering abundant and cheap power, water, fertilizer (food) and heating/cooling for everyone on the planet.

Seaborg Technologies

Currently **25 employees** and hiring.

- Incl. 10 PhDs and people from 4 continents.
- Plus BSc, MSc and PhD students.

We are a **talent magnet** and the leading tech contester (outside the Great Wall):

- World leading in MSR physics.
- Chemical experiments started.
- Technical design phase and licensing process initiated.

Based in Copenhagen, Denmark.

Safety by physics

Reduce sources of failure

Passively safe (**cannot melt down**). **Walk-away safe**: misuse or failure to act results in shutdown.

Remove release mechanisms

Atmospheric operating pressure
no risk of pressure explosions.
No explosive gas production
no risk of gas explosions.

Eliminate dispersion mechanisms

The radioactive elements are fluoride salts, which:

- do not react with air or water,
- are **insoluble in water** and do not release gasses,
- **solidify** outside the reactor.

Conventional nuclear

Safety systems – safety by engineering

Molten salt reactors Inherent safety – safety by physics

Enable an industrially driven industry

1. New fundamental tech choice MSR:

- Reduce sources of failure
- Remove release mechanisms
- Eliminate dispersion mechanisms

2. Make it small (our proprietary innovation):

- New applications
- Enables mass production scale in numbers, not in size
- Viable financial model

3. Reform and use the existing supply chain:

- Accelerates scaling, at scale
- Leveraging existing knowledge and gaining traction through early stage partnerships
- New (scaling) business opportunities for (almost) everyone

Challenges: Regulatory mismatch; issues with corrosion and materials; novel features (degassing, online waste handling, etc.)

Challenges: New moderator required – more funding-intensive development; safeguards regulations misaligned and security requirements disproportionate.

Challenges: Maintain IP; risk to the existing industry; incumbents counter-lobbying.